设f(x)是定义在R上的奇函数,且对任意a,b,当a+b不等于0,都有[f(a)+f(b)]/(a+b)>0
(1)若a>b,试比较f(a)与f(b)的大小
(2)若f(k•3^x)+f(3^x–9^x–2)
人气:325 ℃ 时间:2020-05-09 06:17:16
解答
f(x)是定义在R上的奇函数,则f(-b)=-f(b),
且对任意a,b,当a+b不等于0,都有[f(a)+f(b)]/(a+b)>0
(1)若a>b,试比较f(a)与f(b)的大小
所以a+(-b)=a-b>0,则[f(a)+f(-b)]/[a+(-b)]=[f(a)-f(b)]/(a-b)>0
所以f(a)>f(b)
(2)若f(k•3^x)+f(3^x–9^x–2)
推荐
- 设f(x)是定义在[-1,1]上的奇函数,且对属于[-1,1]的任意实数a,b,当a+b不等于0时,都有[f(a)+f(b)]/(a+b)>0`
- 已知f(x)是定义在[-1,1]上奇函数,且f(1)=1,若a、b€[1,-1],a+b不等于0,且f(a)+f(b)/a+b>0.(1)判断f(x)在[-1,1]上的单调性,并证明你的结论.(2)若f(x)小于等于m^2-2a
- 设f(x)是定义在R上的奇函数,且当x>等于0时,f(x)=x^2,若对任意的x属于[t,t+2],不等式f(x+t)>等于2f(x)恒成立,则实数t的取值范围是____________.
- 已知f(x)是定义【-1,1】上的奇函数,且f(1)=1,若a、b属于【-1,1】,a+b不等于0时,有f(a)+f(b)/(a+b)>0.
- 设f(x)是定义在[-1,1]上的奇函数,对任意a,b属于[-1,1],当a+b不等于0时,都有[f(a)+f(b)]/(a+b)>0
- 求一篇英语作文,最好是原创,the positive and negative impacts of tourism,300字左右~
- 童心向党——做一个有道德的人 这篇作文怎么写?
- 若(sina)^2+2(sinb)^2=2cosx 求(sina)^2+(sinb)^2的最大值和最小值?
猜你喜欢