设a、b、c是任意的非零平面向量,且互相不共线,则
1.(ab)c-(ca)b=0
2.|a|-|b|
人气:376 ℃ 时间:2019-10-25 17:21:41
解答
1 错误.是向量数量积的常见考点.
a·b和c·a均是没有方向的数值,因此题式即为两不共线向量之差为零向量,这是不可能的.由此可知向量的数量积不满足乘法结合律.
2 正确.考虑三角形三边的关系,两边之差小于第三边.
3 错误.
[(b·c)a-(c·a)b]·c
=(b·c)(a·c)-(c·a)(b·c)
=0,故两向量垂直.
4 正确.关键:a^2=|a|^2
(3a+2b)·(3a-2b)
=9a·a+6a·b-6a·b-4b·b
=9|a|^2-4|b|^2
推荐
- 设a,b,c,是任意的非零平面向量,且相互不共线,则下面两个怎么证明时假命题?①(a·b)c-(c·a)b=0;...
- 设a,b,c是任意的非零平面向量,且互不共线,则①|a|-|b
- 设A,B,C均为非零向量,其中任意两个向量不共线,但 A+B与C共线,B+C与A共线,试证 A+B+C=0
- 向量a,b,c是任意的非零平面向量,且互不共线:(a.b)c-(c.a)b=0为什么不是真命题;|a|-|b
- 平面向量a,b共线的充要条件是( )
- 为什么1个水分子又2个氢原子和1个氧原子构成?
- 写出分别能被2,3,5整除的数的特征,写出能同时被2,3,3,5,2,5 2,3,5,整除的数的特征
- 是的,我是一叶不系之舟,曾经那样安恬地依偎在未名湖的臂抱里,在我的心无时无刻不在向往大海的波涛.
猜你喜欢