向量a,b,c是任意的非零平面向量,且互不共线:(a.b)c-(c.a)b=0为什么不是真命题;|a|-|b|
人气:385 ℃ 时间:2020-03-23 08:28:49
解答
对于(a.b)c-(c.a)b=0
b与c是不共线的两个非零向量,
又a·b与c·a均不为零,
所以(a.b)c-(c.a)b=0是假命题.
因为三角形两边之差小于第三边,
所以|a|-|b|第一个能给个反例吗,我觉得您刚才说的和没说一样…解析:对于①,由于b,c是两个不共线的非零向量,
又a·b与c·a都是实数,
所以a·b=0,c·a=0.
又因为a,b,c是非零向量,
∴b⊥a,c⊥a.
故b∥c,这与b,c不共线矛盾,所以①是假命题.
推荐
- 设a,b,c,是任意的非零平面向量,且相互不共线,则下面两个怎么证明时假命题?①(a·b)c-(c·a)b=0;...
- 设a,b,c是任意的非零平面向量,且互不共线,则①|a|-|b
- 设a、b、c是任意的非零平面向量,且互相不共线,则
- 已知关于x的一元二次方程,其中ax^2+bx-c=0,其中a,b,c是非零平面向量,且a与b不共线,则该方程
- “平面向量a,b共线的充要条件是存在实数x,b(向量)=xa(向量)”为什么是错的?零向量不是和所有向...
- 中和反应与复分解反应的关系
- 在直径8厘米的圆中画一个最大的正方形,正方形的面积是多少平方米?【另有4题】
- 月考的感受作文400字怎么写
猜你喜欢