正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM⊥MN,当M运动到什么位置时,Rt△ABM∽Rt△AMN
(利用比例)
人气:185 ℃ 时间:2020-01-29 10:43:24
解答
因为Rt△ABM∽Rt△AMN,其中∠ABM=∠AMN=90°
所以,∠BAM=∠MAN
所以:AB/AM=BM/MN
在Rt△ABM中,由勾股定理得到:AM=√(16+x^2)
由(1)的过程知,CN=x(4-x)/4
所以,在Rt△MCN中由勾股定理得到:
MN=√{(4-x)^2+[x(4-x)/4]^2}=√{(4-x)^2+[x^2(4-x)^2/16]}
=√[(4-x)^2*(x^2+16)]/16
=[(4-x)/4]*√(x^2+16)
代入(1)中有:4/√(16+x^2)=x/[(4-x)/4]*√(x^2+16)
所以:x/(4-x)=1
解得:x=2
推荐
- 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直, (1)证明:Rt△ABM∽Rt△MCN; (2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式; (3)梯形A
- 2、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,
- 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM⊥MN,设MB=x
- 正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM为多少时,四边形ABCN的面积最大?
- 如图,正方形ABCD的边长为1㎝,M,N分别是BC,CD上两个动点,且始终保持AM⊥MN,当M点运动到什么位置时,
- 在纸上剪一个很小的方形孔,让太阳光垂直照射在方形孔上,那么在地面上形成的光斑.这个现象是小孔成像吗?还是其他的什么现象,它成的是实像还是虚像?
- 常见离子的氧化性,还原性比较?
- He passed the exam.lt {make} him very happy
猜你喜欢