正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM⊥MN,当M运动到什么位置时,Rt△ABM∽Rt△AMN
(利用比例)
人气:472 ℃ 时间:2020-01-29 10:43:24
解答
因为Rt△ABM∽Rt△AMN,其中∠ABM=∠AMN=90°
所以,∠BAM=∠MAN
所以:AB/AM=BM/MN
在Rt△ABM中,由勾股定理得到:AM=√(16+x^2)
由(1)的过程知,CN=x(4-x)/4
所以,在Rt△MCN中由勾股定理得到:
MN=√{(4-x)^2+[x(4-x)/4]^2}=√{(4-x)^2+[x^2(4-x)^2/16]}
=√[(4-x)^2*(x^2+16)]/16
=[(4-x)/4]*√(x^2+16)
代入(1)中有:4/√(16+x^2)=x/[(4-x)/4]*√(x^2+16)
所以:x/(4-x)=1
解得:x=2
推荐
- 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直, (1)证明:Rt△ABM∽Rt△MCN; (2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式; (3)梯形A
- 2、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,
- 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM⊥MN,设MB=x
- 正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM为多少时,四边形ABCN的面积最大?
- 如图,正方形ABCD的边长为1㎝,M,N分别是BC,CD上两个动点,且始终保持AM⊥MN,当M点运动到什么位置时,
- 在一个密封的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是_.
- 什么是生命的本质
- 小学英语书六年级上册(PEP版的)第72页的课文的意思
猜你喜欢
- 数学题 几何图形【用初中的方法推理】
- 英语:动词+疑问句+不定式造句
- .在一张足够长的纸条上,从左向右依次写上自然数1到500,然后从左到右每隔三个数字点上一个逗号,如,123,456,789,101,112,……第100个逗号前的那个数字是 .
- 在十件产品中,有三件次品,从中任取五件
- 为什么解决生命科学的问题不能仅靠分子生物学而要靠细胞生物学..
- 2X^3-X^2-8X-5分解因式
- light 和 pink中的i读音是否一致
- 好雨知时节 当春乃发生用了什么修辞方法?