菱形ABCD中,BE垂直于AD于E,BF垂直于CD于F,E为AD中点.1.证明F为AC中点.2.求角ECF的度数
人气:214 ℃ 时间:2019-08-20 16:38:38
解答
1证明:菱形ABCD
∠A=∠B
BE⊥AD BF⊥CD
所以∠ABE=∠FBC
因为AB=BC
△ABE=△FBC
所以AE=CF
因为AE=1/2AD=FC
FC=1/2DC
所以F为AC中点
2连结BD
因为BF是三线合一
所以BD=BC=CD
所以∠ADC=120
设EC=a ED=x DC=2x
a^2=x^2+(2x)^2-2*x*2xcos120
a^2=7x^2
a=√7x
cos∠ECF=[(2x)^2+7x^2-x^2]/2*2x*√7x
=5√7/14
∠ECF=arccos(5√7/14)
推荐
- 菱形ABCD中,BE垂直于AD于E,BF垂直于CD于F,E为AD中点.1.证明F为AC中点.2.求角ECF的度数
- 如图 在菱形abcd中 ∠b=60°点e f分别在ab ad上 且be=af 你能说明△ecf是等边三角形吗?
- 如图,菱形ABCD中,点E,M在AD上,且CD=CM,点F为AB上的点,且角B=2角ECF.
- 如图,在菱形ABCD中,∠B=60°,点E、F分别在AB、AD上,且BE=AF,试判断△CEF的形状,并说明理由.
- 如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F. 求证:AB与EF互相平分.
- 乙数除甲数商3余5,甲数是47,乙数是多少
- 语()()()填成语
- x的平方+2√5x+10=0.这个利用公式法怎么解啊
猜你喜欢