若斜率为2的动直线l与抛物线x^2=4y相交于不同的两点AB,O为坐标原点
(1)若线段AB上的P点满足向量AP=向量PB,求动点P的轨迹方程
(2)对于(1)中的点P,若点O关于点P的对称点为Q且|向量OQ|≤4根号85,求直线L在y轴上截距的取值范围
人气:226 ℃ 时间:2019-11-10 15:35:53
解答
先画草图,再计算分析:
(1)P点为AB的中点,设A(x1,x1²/4)、B(x2,x2²/4),
计算得kAB=(x1+x2)/4=2,则P(4,(x1²+x2²)/8),
即P点的轨迹方程为x=4(y>4);即P点方程为(4,y)(y>4);
(2)设Q(x3,y3),则x3+0=2×4=8,y3+0=2×y,
即Q点的轨迹方程为x=8(y>8);
而|向量OQ||≤4√85,则P点的轨迹方程x=4(y>4)的ymax=2√85,
则其y的取值范围为(4,2√85],而kL=2,
则其对应的直线L在y轴上截距的取值范围为(4-8,2√85-8],
即(-4,2√85-8].
推荐
- 抛物线X^2=4y 与过点M(0,2)的直线L相交于A.B两点,O为坐标原点,若直线OA与OB的斜率之和为2,求直线方程,
- 抛物线y=-x22与过点M(0,-1)的直线l交于A,B两点,O为原点,若OA和OB的斜率之和为1,求直线l的方程.
- 已知抛物线x^2=ay点o为坐标原点斜率为1的直线与抛物线交与AB 1若直线过(0,2)且a=4求AOB得面积
- 设直线l与抛物线y=-x^2/2相交于A、B两点,O为原点,若直线OA与OB的斜率之和为1,求直线l的斜率
- 斜率为1的直线l与抛物线y^2=2x相交于两点A,B,且 以AB为直径的圆经过原点,求直线l的方程
- 环保小句子 如小草微微笑,请你绕一绕.
- 甲乙两地相距350km,一列快车和一列慢车同时从两地相对开出,3.5小时后相遇,已知快车和慢车的速度的比是3:2,这两列火车的速度分别是多少?
- x平方+2x+2=8x+4 二元一次方程
猜你喜欢