菱形ABCD的周长为2p,AC+BD=q,求菱形的面积
设,AC和BD的交点为O,即菱形的中心
那么AOB为直角三角形
菱形的面积为:4*OA*OB
且OA+OB=q/2
OA^2 + OB^2 = p^2/4
(OA+OB)^2 - OA^2 + OB^2 = 2*OA*OB = q^2/4 - p^2/4
所以菱形的面积为:(q^2 - p^2)/2
AC和BD的交点为O,
令OA=X,OB=Y
X^2+Y^2=AB^2=p^2/4
X+Y=q/2
所以菱形面积为:(AB×CD)/2=2XY=(X+Y)^2-(X^2+Y^2)
=q^2/4-p^2/4
复制这2个的就不用回答了 我要的是准确的
人气:332 ℃ 时间:2020-04-05 03:16:49
解答
简单点.有个定理,叫作菱形的面积等于1/2对角线的积.
那么菱形面积S=(AC×BD)/2
AC+BD=q
(AC+BD)^2=q^2
AC^2+BD^2+2*AC*BD=q^2
设,AC和BD的交点为O,即菱形的中心
那么AOB为直角三角形,根据勾股定理AB^2=(AC/2)^2+(BD/2)^2
即AC^2/4+BD^2/4=(2p/4)^2
AC^2+^BD^2=p^2
结合上面已经得到的结论AC^2+BD^2+2*AC*BD=q^2
得到:2*AC*BD=q^2-p^2
所以得到菱形面积S=(AC×BD)/2=q^2/4-p^2/4
推荐
- 如图,某厂房屋顶钢架外框是等腰三角形,其中AB=AC,D,E,F分别是BC,AB,AC的中点.已知AB=6m,求DE,DF的长
- 如图所示,有一块长方形的空地ABCD,其中AB=8m,BC=15m,在点B处竖着一根电线杆,在电线杆上距地面6m处有一盏电灯P.试求点D到灯的距离(精确到0.1m).
- 如图,在△ABC中,AB=AC,CD为AB边上的高,求证:∠BCD=1/2∠A.
- (1)如图,已知△ABC,∠C=90度. 按下列语句作图(尺规作图,保留作图痕迹): ①作∠B的平分线,与AC相交于点D; ②在AB边上取一点E,使BE=BC; ③连接ED. (2)根据所作图形,写出一组
- 在三角形纸片ABC中,∠C=90°,∠A=30°,AC=3,折叠该纸片,使点A与点B重合,折痕与AB、AC分别相交于点D和点E(如图),折痕DE的长为_.
- 太阳是一个大火球吗?
- 如何只用常用仪器区分CU2S 、CUS
- Come along,I will show you my new stamps.
猜你喜欢