设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(x)=-f(ε)/ε.
(提示 中值定理的 综合运用)
应为设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(ε)=-f(ε)/ε.
人气:228 ℃ 时间:2019-08-16 23:58:52
解答
证明:设g(x)=xf(x),
则g'(x)=xf'(x)+f(x) ,g(1)=1f(1)=0 ,g(0)=0*f(0)=0
所以g(x)在[0,1]上连续,在(0,1)内可导且g(0)=g(1),由罗尔中值定理得:
存在一点ε∈(0,1),使g'(ε)=εf'(ε)+f(ε) =(g(1)-g(0))/(1-0)=0
所以f'(ε)=-f(ε)/ε
推荐
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:至少存在一点a属于(0,1),使f(a)
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明在(0,1)内至少存在一点&,
- 若函数f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=0,证明:在(0,1)内必存在一点ξ,使得f''(ξ)=2f'(ξ)/(1-ξ). 用泰勒公式证明麻烦写下详细过程
- 设函数f(x)在[0,1]上可导,且满足f(1)=0,求证:在(0,1)内至少存在一点ξ,使f′(ξ)=-f(ξ)ξ.(提示:利用中值定理证明).
- 设函数f(x)在[0,1]上连续,在(0,1)内可导且f(0)=f(1)=0,f(1/2)=1,试证明至少存在一点ξ∈(0,1),使得f′(ξ)=1.
- 爱因斯坦为什么认为光速是宇宙中最快的速度?
- 一、——Who went to Central Park last Saturday?
- 如何辨别NaOH、CuSO4、MgCl2、Na2SO4
猜你喜欢