> 数学 >
已知函数f(x)=e^x-x 求证f(1/2)+f(1/3)+f(1/4)...>n+n/4(n+2)
人气:190 ℃ 时间:2020-09-18 11:13:00
解答
此原题应为已知函数f(x)=e^x-x,求证:f(1/2)+f(1/3)+f(1/4)...+f[1/(n+1)]>n+n/4(n+2)
证明如下:
利用求导的方法,容易证明:f(x)=e^x-x >1+x^2/2,所以:f(1/n)>1+(1/n)^/2,此处省略这一步
对此不等式,分别取n=2,3,...n+1,得到n个不等式,并累加,得:
f(1/2)+f(1/3)+f(1/4)...+f[1/(n+1)]>n+(1/2)[(1/4+1/9+1/16+...+1/(n+1)^2]
利用1/n^2>1/n(n+1)=1/n-1/(n+1)对中括号中的部分拆项求和得
(1/4+1/9+1/16+...+1/(n+1)^2]=1/2-1/(n+2)=n/[2(n+2)],将此结果代入上面不等式,即可得证
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版