设P是n阶可逆矩阵,如果B=P的负一次方AP,证明:B的m次方=A的m次方P求解
人气:348 ℃ 时间:2019-10-19 20:00:12
解答
B = P^(-1)AP所以B^m = P^(-1)AP P^(-1)AP P^(-1)AP ...P^(-1)AP (m个相乘)= P^(-1)A [P P^(-1)] A [P P^(-1)] A [P ...P^(-1)] AP (结合律) = P^(-1) AAA.AP ( [P P^(-1)] = E)= P^(-1) A^m P .
推荐
- 设A为n阶矩阵A的m次方等于0矩阵,证明E-A可逆
- 设矩阵A的K次方等于0矩阵,如何证明E-A可逆,并求E-A的逆
- 设n阶矩阵A满足A的m次方等于0,m是正整数,证明E-A可逆,且E-A的逆矩阵等于E+A+A^2+A^3+.+A^m-1
- 求证 ①A是n阶矩阵,则|A*|= |A|的n-1次方 ②A是n阶可逆矩阵,则|A-1|=|A|-1 (-1是次方 A的上标)
- 线性代数证明题 若A,B为同阶可逆矩阵,则A的-1次方,B的-1次方可交换的充要条件是A,B可交换.
- 已知x1,x2是一元二次方程3x*x+2x-6=0的两个根,不解方程,求x1*x1+x1x2+x2*x2和x2/x1+x1/x2的值
- 为什么是how much does it weigh 而不是how many..
- Changes took place in the Scottish universities which had a major impact on the Society.For example
猜你喜欢