已知三角形ABC内接于圆O,点D在OC的廴长线上,sinB=1/2,角D=30度
1、求证AD是圆O的切线 2、若AC=6,求AD的长
人气:337 ℃ 时间:2019-08-21 16:42:38
解答
因为sinB=1/2,所以角B=30度,角AOC=60度(圆心角是圆周角的一倍),又,点D在OC的廴长线上,角D=30度
所以,在三角形OAD中,角OAD=90度,即:AD是圆O的切线
同时圆心角 AOC=60度,OA=OC(半径相等),即三角形AOC是等边三角形,所以AO=AC=6
因为三角形OAD是直角三角形,角D=30,所以OD=2*AO=2*6=12
根据勾股定理,AD的平方=OD的平方-OA的平方=12*12-6*6=108
AD=6*根号3=10.392(约等于)
推荐
- 三角形ABC内接于圆O,点D在OC的延长线上,sinB=1/2,角CAB=30°.求证:AD是圆O的切线
- 已知,三角形ABC内接于圆O,点D在OC的延长线上
- 如图,已知三角形ABC内接于圆O,点D在OC的延长线上,sinB=1/2,角D=30°(1)求证AD是切线.(2)若AC=6,求AD的长.
- 如图,已知△ABC内接于圆O,点D在OC的延长线上,sinB=1/2,∠D=30度 求证AD是圆
- 如图圆内接三角形ABC,已知SinB=3/4,半径OA=OC=2,求AB的长?
- 左边是木字旁右边上边一个立下边一个口念什么字啊?
- 机械硬盘接口有哪些
- 有一批人合买一条船,后有10人退出,经过计算,剩下的人买船每人要多拿出一元,
猜你喜欢