四边形ABCD为正方形,QA垂直于平面ABCD,PD平行于QA,QA=AB=1/2PD,证明:PQ垂直于平面DCQ
人气:219 ℃ 时间:2019-11-01 19:52:48
解答
CD⊥AD,CD⊥PD,所以CD⊥面PQAD,所以CD⊥QP
又隔离平面PQDA
设AB=1,所以AD=AQ=1,PD=2
QD=√2 PQ=√2(因为Q做PD的垂线交于F,QF=1,PF=1,所以PQ=√2)
那么PQ^2+QD^2=4=PD^2
所以PQ⊥QD
又上证QP⊥CD
所以QP垂直面QDC
推荐
- 四边形ABCD为正方形,QA垂直平面ABCD,PD平行QA,QA=AB=1\2PD 证明PD垂直平面DCQ
- 四边形ABCD为正方形,QA垂直平面ABCD,PD平行QA,QA=AB=1\2PD 证明PD垂直平面DCQ
- 四边形ABCD为正方形,PD垂直平面ABCD,PD平行QA,QA=AD=1,且Vq-abcd=Vc-pqd.证明平面PQC垂直平面DCQ
- 如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=1/2PD. (Ⅰ)证明PQ⊥平面DCQ; (Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.
- 如图,PD垂直正方形ABCD所在的平面,PD=DC,E为PC的中点,EF垂直于PB于点F,求证,PB垂直于平面EFD
- 已知2(a-1)的二次方+3有最小值则最小值是
- What is that ? We do not need u in my brother life. it is enough what u made
- a与b有两个公共点,则a与b什么位置关系
猜你喜欢