10x−10−x |
10x+10−x |
102x−1 |
102x+1 |
f(x)=
10−x−10x |
10−x+10x |
102x−1 |
102x+1 |
∴f(x)是奇函数
(2)f(x)=
102x−1 |
102x+1 |
则f(x1) −f(x2) =
102x1−1 |
102x1+1 |
102x2−1 |
102x2+1 |
2(102x1−102x2) |
(102x1+1)(102x2+1) |
2(100x1−100x2) |
(102x1+1)(102x2+1) |
因为x1<x2,所以100x1<100x2,所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)为增函数.