函数f(x)=2ax+1-2a在(-1,1)上存在X0=0,则实数a的取值范围
人气:237 ℃ 时间:2019-10-29 06:26:27
解答
题目应该是这样吧
如果函数 f(x)=x2+2(a-1)x+2在区间(-∞,4)上是减函数,则实数a的取值范围是( ).
方法一:f(x)图像开口向上,对称轴为x=-(a-1)=1-a
因为函数在区间(-∞,4)上是减函数,所以1-a≥4
得a≤-3
方法二:f(x)的导数f`(x)=2x+2(a-1)在(-∞,4)恒小于0
∴f`(4)≤0
得a≤-3
如果你题目真没打错的话,那就这样做吧
f(x)=[1+2(a-1)]x+2在区间(-∞,4)上是减函数
那么k=1+2(a-1)0
得a0.5
这种情况下f(x)在R上都是减的,不仅在(-∞,4)上是减得,所以怎么看都觉得你这题目打错了.
推荐
- 对于定义域为R的函数f(x)若存在实数X0使f(X0)=X0则称x0是f(x)的一个不动点.
- 已知函数f(x)=3mx-4,若在[-2,0]上存在x0,使f(x0)=0,则实数m的取值范围为___.
- 已知a是实数,函数y=2ax²+2x-3-a,若存在x0(0≥x≥-1),满足2ax²+2x-3-a=0,求实数a的取值范围
- 对于定义在R上的函数F(X),如果存在实数x0,使F(X0)=X0,那么X0叫做函数F(X)的一个不动点.已知函数F(X)=
- 设a>0,函数f(x)=1/x^2+a 证明:存在唯一实数x0∈(0,1/a),使f(x0)=x0
- 生长在亚马逊会流血的树是什么树?
- better man
- x+3y=2 3y+z=4 z+3x=3 这个三元一次方程的解
猜你喜欢