a,b,c均为实数,且a+b+c=1.求证(abc)/(bc+ca+ab)
人气:225 ℃ 时间:2020-02-16 07:15:24
解答
a,b,c应均为正实数,由a+b+c=1,得(abc)/(bc+ca+ab)=1/(1/a+1/b+1/c),将a+b+c=1代入得(abc)/(bc+ca+ab)=1/[1+(b+c)/a+1+(a+c)/b+1+(a+b)/c]=1/[3+(b+c)/a+(a+c)/b+(a+b)/c]=1/[3+b/a+c/a+a/b+c/b+a/c+b/c],由均值不等式得(b/a)*(a/b)>=2,(c/a)*(a/c)>=2,(c/b)*(b/c)>=2,故(abc)/(bc+ca+ab)
推荐
- 已知a,b,c为实数,且ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5.求abc/ab+bc+ca的值
- 已知a、b、c为实数,且ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5.求abc/ab+bc+ca的值
- 已知a、b、c为实数,且ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5.求abc/ab+bc+ca的值
- 已知a,b,c均为实数,且abc=1,则a+ab+1分之1+b+bc+1分之1+c+ca+1分之1的值为
- 已知a,b,c为实数、a+b+c>0,ab+bc+ca>0,abc>0,求证a>0,b>0,c>0
- 找课文,A man who never gave up .需要全文.
- obama received the Nobel Peace Prize ,how to criticize this thing
- 表示腿的动作的词(30个)
猜你喜欢