椭圆一个焦点为F,点P在y轴上,PF交椭圆于M、N,向量pm=λ1向量MF,向量PN=λ2向量NF,则λ1+λ2=
人气:299 ℃ 时间:2020-05-11 20:28:40
解答
解:设P(0,p),椭圆上一点M(x,y),设向量PM=λ向量MF,则(x,y-p)=λ(c-x,-y)→x=λc/(1+λ),y=p/(1+λ).代入椭圆方程得b^4λ^2+2a^2b^2λ+a^2b^2-a^2p^2=0.由题意,λ1、λ2即为上面方程的根,∴λ1+λ2=-2a^2b^2/b^4=-2a^...
推荐
- 设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M,N两点,向量PM=t1 倍向量MF,向量PN=t2 倍向量NF
- P是椭圆x^2/9+y^2/5=1上的动点,M,N分别为左右焦点,若|PM|*|PN|=2/(1-cosMPN),求P点坐标
- 过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点F的直线交双曲线于M,N两点,交y轴于P,求PM/MF-PN/NF的值?
- 设F(m,0)(m>0)为定点,P,M,N为动点,且P,M分别在y轴和x轴上.若PM·PF=0,PN+PM=0(前头的都是向量),求点N的轨迹C的方程
- P,Q,M,N四点都在椭圆x^2+y^/2=1上,F为椭圆在y轴正半轴上的焦点,已知向量PF与向量FQ共线,向量MF与向量FN
- “你在哪儿?你是谁?我们认识了吗?”的英文翻译
- 与正方体的一条对角线垂直的各个侧面的对角线的条数是多少?
- 1-100这100个数中,所有3的倍数的和.
猜你喜欢