fx=x2-alnx在1,2左开右闭是增函数.gx=x-a根号x在0,1左闭右闭为减函数.
求两者的表达式. 第二问 求证当x>0,fx=gx+2一个解
人气:223 ℃ 时间:2019-10-17 01:07:25
解答
有点复杂啊,没有悬赏的话最好分次问
(1)
f(x)=x²-alnx
f'(x)=2x-a/x=(2x²-a)/x
∵ f(x)在[1,2]上递增
∴ (2x²-a)/x≥0恒成立
即 2x²-a≥0恒成立
∴ 2x²-a的最小值2-a≥0
∴ a≤2
g(x)=x-a√x
g'(x)=1-(1/2)a/√x
∵ g(x)在[0,1]上递减
∴ 1-(1/2)a/√x≤0恒成立
∴ √x≤(1/2)a恒成立
即 √x的最大值1≤(1/2)a
∴ a≥2
综上 a=2
∴ f(x)=x²-2lnx,g(x)=x-2√x
(2) 设F(x)=f(x)-g(x)-2
F'(x)=2x-2/x-1+1/√x=0
解得 x=1
00 F(x)递减
∴ F(x)有最小值F(1)=1-0-(1-2)-2=0
∴ F(x)=0只有一个解
∴ 当x>0,fx=gx+2只有一个解
推荐
- 已知函数fx=x^2-alnx在(1,2)上是增函数,g(x)=x-a根号x在(0,1)上是减函数,
- f(x)=x^2-alnx 在(1,2]是增函数 g(x)=x-a乘根号x在(0,1)为减函数,求f(x),g(x)表达式
- 已知f(x)=x^2-alnx在(0,1)上为减函数,g(x)=x-a根号x在{1.2}(闭区间)上是增函数,求函数f(x)和g(x)
- 已知f(X)=x^2-alnx在(1,2】上是增函数,g(x)=x-a*(x的根号)在(0,1)上是减函数
- 已知函数f(x)=23sinxcosx+2cos2x−1. (I)求f(π6)的值及f(x)的最小正周期; (II)当x∈[0,π2]时,求f(x)的最大值和最小值.
- 当正整数m为?时,方程组{1、y=mx+3 2、y=(2m-1)x 的解是正整数
- 2x的平方减4xy减2x等于多少
- she would like swimming with me.修改病句
猜你喜欢