数列{Xn}中,x1=a>0,xn+1=1/2(xn+a/xn).若次数列的极限存在,且大于0,求这个极限.
人气:250 ℃ 时间:2019-08-22 12:36:21
解答
设极限为x
则在xn+1=1/2(xn+a/xn)两边令n趋于无穷得
x=(x+a/x)/2
即得x^2=a
又x>0,所以x=根号(a)
推荐
- 设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限.
- 数列{an}满足X1=a>0,Xn+1=1/2(Xn+a/Xn),n∈N*,若数列{Xn}的极限存在且大于0,求Xn(n→∞)时的极限
- 0<X1<2,Xn+1=根号下2+Xn.证明数列Xn有极限,并求出该极限…
- 设x1=10,xn+1=6+xn(n=1,2,…),试证数列{xn}极限存在,并求此极限.
- 如何证明数列X1=2,Xn+1=1/2(Xn+1/Xn)的极限存在?说个思路也可以..
- 只有我们这个星球才有生命吗?
- 已知集合A={p|x2+2(p-1)x+1=0,x∈R},求集合B={y|y=2x-1,x∈A}. 我看过别人
- 在1升pH=5.00的HAc-NaAc缓冲溶液中,通入HCl(气体)0.05mol(忽略体积变化),溶液的pH值由5.00下降到4.8
猜你喜欢