x,y,z是正实数,x^2+y^2+z^2=1,求证:x/(1-x^2)+y/(1-y^2)+z/(1-z^2)≥2分之3倍根号3. 请高手解答.谢谢!
人气:418 ℃ 时间:2020-06-08 00:38:44
解答
显然0< x^2<1
我们考虑 2x^2*(1-x^2)^2=2x^2*(1-x^2)(1-x^)<=((2x^2+1-x^2+1-x^2)/3)^3=8/27
所以 x^2*(1-x^2)^2<=4/27
x*(1-x^2)<=2/√27
1/(x(1-x^2))>=3√3/2
x/(1-x^2)>=3/2*√3*x^2
同理有
y/(1-y^2)>=3/2*√3*y^2
z/(1-z^2)>=3/2*√3*z^2
三式相加就有:
x/(1-x^2)+y/(1-y^2)+z/(1-z^2)>=3/2*√3*(x^2+y^2+z^2)=3/2*√3
从而得证.
推荐
- 能使函数y=根号x+根号(x+a)的最小值是二分之根号三的实数a有
- 以知实数x,y,z满足(根号x)+(根号y-1)+(根号z-2)=2分之1(x+y+z),则xyz=?列式计算.
- 当x是多少时,根号3-x+根号x-1分之1在实数范围内有意义
- 若X、Y为实数,且Y=根号X-2+根号2-X+3,则X的Y次方的值等于.
- 若x,y为实数,且y=x+2分之根号下(x平方-4)+根号下4-x的平方+1 求根号下x+y乘根号下x-y的值
- 一座桥长300米,桥的负重150斤,人的体重是145斤,还有两个铁球每个铁球个5斤,人要带着球应该 怎么过桥?
- 若x>0,y>0,且x+2y=4,则1/x+2/y的最小值为 _ .
- 甲乙两地相距200千米 客、货两汽车同时从甲开往乙 客车还有20千米时 货车还有30千米 这样客车行100千米时
猜你喜欢