> 数学 >
在三角形ABC中,角A、B、C所对的边分别为a,b,c,若2sinC的平方=3cosC,c=√7
在三角形ABC中,角A、B、C所对的边分别为a,b,c,若2sinC的平方=3cosC,c=√7,并且三角形ABC的面积为(3√3)/2
求:角C的大小
a+b的值
人气:410 ℃ 时间:2019-08-31 07:42:23
解答
(1)2sinc^2=3cosC
2-2cosC^2=3cosC
2cosC^2+3cosC-2=0
cosC=1/2或cosC=-2(舍)
C=pi/3
(2)S△ABC=1/2absinC=(3√3)/2
ab=6
c^2=a^2+b^2-2abcosC
即7=a^2+b^2-ab=(a+b)^2-3ab=(a+b)^2-18
a+b=5
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版