∴
| y+3 |
| x+2 |
| x2−2x+5 |
| x+2 |
令x+2=t(1≤t≤3),则x=t-2
∴
| y+3 |
| x+2 |
| t2−6t+13 |
| t |
| 13 |
| t |
设f(t)=t+
| 13 |
| t |
| 13 |
| t2 |
∴函数在[1,3]上,f′(t)<0,函数为减函数
∴t=1时,函数取得最大值f(1)=8;t=3时,函数取得最小值f(3)=
| 4 |
| 3 |
∴
| y+3 |
| x+2 |
| 28 |
| 3 |
故答案为:
| 28 |
| 3 |
| y+3 |
| x+2 |
| y+3 |
| x+2 |
| x2−2x+5 |
| x+2 |
| y+3 |
| x+2 |
| t2−6t+13 |
| t |
| 13 |
| t |
| 13 |
| t |
| 13 |
| t2 |
| 4 |
| 3 |
| y+3 |
| x+2 |
| 28 |
| 3 |
| 28 |
| 3 |