∴
y+3 |
x+2 |
x2−2x+5 |
x+2 |
令x+2=t(1≤t≤3),则x=t-2
∴
y+3 |
x+2 |
t2−6t+13 |
t |
13 |
t |
设f(t)=t+
13 |
t |
13 |
t2 |
∴函数在[1,3]上,f′(t)<0,函数为减函数
∴t=1时,函数取得最大值f(1)=8;t=3时,函数取得最小值f(3)=
4 |
3 |
∴
y+3 |
x+2 |
28 |
3 |
故答案为:
28 |
3 |
y+3 |
x+2 |
y+3 |
x+2 |
x2−2x+5 |
x+2 |
y+3 |
x+2 |
t2−6t+13 |
t |
13 |
t |
13 |
t |
13 |
t2 |
4 |
3 |
y+3 |
x+2 |
28 |
3 |
28 |
3 |