在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PA⊥底面ABCD,PA=AD=2,点E为PB的中点.求E到平面PCD的距离
人气:464 ℃ 时间:2019-08-21 22:11:35
解答
取PA的中点F,连接EF,过点F作FO⊥PD交PD于O,
因为点E为PB的中点,ABCD是正方形
所以EF∥AB∥CD,所以EF∥面PCD,
所以点E到平面PCD的距离=点F到平面PCD的距离,
因为PA⊥底面ABCD,
所以PA⊥CD,
因为CD⊥AD,
所以CD⊥面PAD,
所以CD⊥FO,
因为FO⊥PD,
所以FO⊥面PCD,
所以点F到平面PCD的距离为FO,
易得三角形PFO∽三角形PDA,
所以PF/PD=FO/AD,
解得FO=根号2/2,即E到平面PCD的距离为根号2/2
推荐
- 已知四棱锥P-ABCD,底面ABCD是矩形,PA垂直平面ABCD,MN分别是AB,PC的中点,且PA=AD.求证:平面PMC垂直平面PCD
- 如图四棱锥P-ABCD中,底面ABCD为矩形,PA垂直平面ABCD,E是PD中点,1证明PB平行平面AEC,
- 四棱锥P-ABCD的底面是边长为a的菱形,平面PCD⊥平面ABCD,PC=a,PD=√2a,E为PA的中点,求证:平面EDB⊥平面ABCD
- P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC.
- 如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证: (1)PB∥平面AEC; (2)平面PCD⊥平面PAD.
- 比较两个德语句子
- 为什么等边三角形a^2+b^2+c^2=ab+bc+ac可以变形为(a-b)^2+(a-c)^2+(b-c)^2=0
- 31.The two farmers were _____.
猜你喜欢