记公差d≠0的等差数列{an}的前n项和为Sn,一直a1=2+根号2,S3=12+3根号2.记bn=an-根号2,若自然数n1,n2…
记bn=an-根号2,若自然数n1,n2…,nk…,满足1≤n1≤n2≤……≤nk≤……,并且bn1,bn2,…,bnk,…,成等比数列,其中n1=1,n2=3,求nk(用k表示)
人气:113 ℃ 时间:2019-08-21 17:41:21
解答
a(n)=a+(n-1)d=2+2^(1/2) + (n-1)d.
s(n) = na + n(n-1)d/2 = n[2+2^(1/2)] + n(n-1)d/2,
12 + 3(2)^(1/2) = s(3) = 3[2+2^(1/2)] + 3d,d = 2.
a(n) = 2+2^(1/2) + 2(n-1).
b(n) = a(n) - 2^(1/2) = 2+2(n-1)=2n.
b[n(k)] = 2n(k) = b[n(1)]*q^(k-1) = 2n(1)*q^(k-1) = 2q^(k-1),
b[n(2)] = 2n(2) = 6 = 2q,q = 3.
b[n(k)] = 2n(k) = 2q^(k-1) = 2*3^(k-1),
n(k) = 3^(k-1)
推荐
- 设数列{an}是首项为a1(a1>0),公差为2的等差数列,前n项和为Sn,且根号S1,根号S2,根号S3成等差数列,
- 设各项均为正数的数列{an}的前n项和为Sn已知2a2=a1+a3数列{根号Sn}的公差为d的等差数列
- 设数列{an}的前n项和为Sn,若{an}和{Sn+n}都是公差为d(d≠0)的等差数列,则a1= _ .
- 已知正数列{an}和{bn}满足:对任意n(n属于N*),an,bn,an+1成等差数列且an+1=根号下b
- 各项和为正数的数列an和bn满足an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列 求证(根号bn)是等差数列
- 求圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆的方程.
- 1.一辆越野车在沙漠中行驶32.5千米耗油5.2升.它要跨越的无人区总路程为1303千米,至少要准备多少升汽油?(得数保留整数)
- 住院时我很难过,怎么翻译?
猜你喜欢