1.求以y=±根号3 *x为渐近线方程,且焦点在(0,2)的双曲线方程.
2.求与直线x+y-1=0垂直且与圆(x-1)^2 +(y-2)^2 =4相切的直线方程
3.已知抛物线的顶点在原点,对称轴为坐标轴,焦点是双曲线((x^2)/5)-((y^2)/4)=1的右焦点,求抛物线的标准方程.
4.求满足下列条件的椭圆方程:a+b=5且过(3,0)
人气:437 ℃ 时间:2019-08-18 09:47:31
解答
1.渐近线为 y=±√3 *x,焦点在(0,2),c=2,且焦点在y轴上,所以a/b=√3,a=√3•b
又a²+b²=c²=4,所以3b²+b²=4,解得,b=1,a=√3,双曲线方程为y²/3 -x²=1
2.直线x+y-1=0的斜率为-1,所以欲求直线的斜率为1,设直线方程为x-y+b=0,则圆心(1,2)到直线 x-y+b=0的距离等于半径2,即
|1-2+b|/√[1²+(-1)²]=2,|b-1|=2√2,b=1+2√2或b=1-2√2
直线方程为x-y+1+2√2=0或x-y+1-2√2=0
3.双曲线((x^2)/5)-((y^2)/4)=1中,a²=5,b²=4,所以c²=a²+b²=9,c=3,右焦点为(3,0)
所以,抛物线的焦点为(3,0),开口向右,p/2=3,p=6,标准方程为y²=12x
4 中心在原点,对称轴是坐标轴的椭圆过(3,0)(这个点是椭圆的长轴端点),即a=3,
又a+b=5,所以 b=2,椭圆方程为x²/9+y²/4=1
推荐
- 已知双曲线的两条渐近线方程为根号3*x±y=0,且焦点到渐近线的距离为3,求此双曲线的方程
- 求两条渐近线为x+2y=0和x-2y=0且截直线x-y-3=0所得的弦长为833的双曲线方程.
- 已知焦点在x轴上的双曲线的一条渐近线为y=-3/2 x,焦距为2又根号13,求双曲线标准方程
- 设双曲线的方程为x^2/a^2-y^2/b^2=1(a>0,b>0),其相应的实轴长为4根号3,焦点到渐近线的距离为根号3.
- 双曲线C的中心在原点,右焦点为F((2根号3)/3,0),渐近线方程为y=(正负根号3)x.
- 84.56除以7的竖式
- Look,Tom is ______(eaiting wait)for the bus.选择理由
- 一根1米长的木棒,小明第一次截去全长的1/3,第二次截去余下的1/3,依次截去前一次的1/3,则第10次截去后剩下的木棒长 _ 米.
猜你喜欢