设向量OQ=(根号3,-1),向量OP=(cosa,sina),0
人气:368 ℃ 时间:2020-02-04 05:08:15
解答
OQ=(√3,-1),|OQ| = 2,幅角 arg OQ = arc tan (-1/√3) = -π/6
(1) OP垂直OQ,所以,幅角相差 π/2,则 a= -π/6 + π/2 = π/3,所以,tan a = √3
(2) 由余弦定理 |PQ|^2 = |OQ|^2 + |OP|^2 - 2 |OQ|*|OP| cos (a+π/6) = 5 - 4 cos(a+π/6)
显然,最大值当且仅当 cos(a+π/6),即 a = 5π/6时,最大值为 |PQ|^2=9,|PQ|=3.
推荐
- 已知向量m=(cosa-(根号2)/3,-1),n=(sina,1)
- 已知向量a=(cosa,sina),向量b=(根号3,-1),则|2a-b|的最大值?
- 已知向量m=(cosa,sina)和n=(根号2-sina,cosa),a∈(π,2π),且|m+n|=(8根号2)/5,求cos(a/2+π/8)的值
- 已知向量a=(根号3,1)向量b=(sina-m cosa)
- 已知向量a=(cosa,sina),b=(根号2-sina,cosa),a∈(-π/2,π/2)
- 关于以下三个英语短语的区别的问题
- 如图,已知:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D、E两点(D、E不与B、A重合). (1)
- lim(x→0)[ cosx-1 /(sin² x)] 等于多少?
猜你喜欢