(1)作AE⊥BC于点E,BE=BC-AD=4-1=3,(1分)
tan∠ABC=
| AE |
| BE |
| 2 |
| 3 |
∴AE=DC=2,(2分)
设A(-1,y1)B(-4,y2),
∴y1=-k,y2=−
| k |
| 4 |
∵y1-y2=CD=2,
∴−k−(−
| k |
| 4 |
∴k=−
| 8 |
| 3 |
(2)∵k=−
| 8 |
| 3 |
∴y=−
| 8 |
| 3x |
∴当x=-4时,y=−
| 8 |
| 3×(−4) |
| 2 |
| 3 |
∴BH=
| 2 |
| 3 |
∴S五边形ABHOD=S梯形ABCD+S矩形BHOC=
| 1 |
| 2 |
| 2 |
| 3 |
| 8 |
| 3 |
| 23 |
| 3 |
| 2 |
| 3 |
例函数y=| k |
| x |
(1)作AE⊥BC于点E,| AE |
| BE |
| 2 |
| 3 |
| k |
| 4 |
| k |
| 4 |
| 8 |
| 3 |
| 8 |
| 3 |
| 8 |
| 3x |
| 8 |
| 3×(−4) |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 8 |
| 3 |
| 23 |
| 3 |