.设随机变量X与Y相互独立,且X~N(0.1),Y~N(1,4). (1)求二维随机变量(X,Y)的概率密度f(x,y); (2
人气:271 ℃ 时间:2019-08-20 16:31:38
解答
设随机变量X与Y相互独立,且X~N(0,1),N(1,4).(1)求二维随机变量(X,Y)的概率密度f(x,y).(2)设(X,Y)的分布函数为F(x,y),求F(0,1).f(x,y)=(1/(4π))*e^[-x^2/2-(y-1)^2/8]F(x,y)=FX(x)*FY(y),F(0,1)=FX(0)*FY(1)=0...
推荐
- 设二维随机变量(X,Y)的概率密度为:f(x,y)=4.8y(2-x)[0≤x≤1,0≤y≤x],0[其他],求边缘概率密度
- 设二维随机变量(X,Y)的概率密度为f(x,y)=e-x-y x>0,y>0;0,其他.求证明x,y相互独立.
- 1、设二维随机变量(X,Y)的概率密度为,问X与Y是否相互独立,并说明理由.
- 设二维随机变量(X,Y)的概率密度f(x,y)=1/2(x+y)e^-(x+y),x>0,y>0;=0 ,其他
- 设二维随机变量(X,Y)的概率密度为f(x,y)=A(x+y),0
- 用一句话概括中心
- 青年志愿者标志的含义是什么?
- ∫[x^2/(4 - x^2)^(1/2)]dx这个不定积分怎么做?
猜你喜欢