数学代数证明题
证明2003*2004*2005*2006+1是一个整数的平方,并求出这个整数
人气:372 ℃ 时间:2020-03-20 10:03:16
解答
证明2003*2004*2005*2006+1是个完全平方数,并求出这个数.
设2004=a
2003*2004*2005*2006+1
=(a-1)a(a+1)(a+2)+1
=[(a-1)(a+2)][a(a+1)]+1
=[(a^2+a)-2](a^2+a)+1
=(a^2+a)^2-2(a^2+1)+1
=(a^2+a-1)^2
=(2004^2+2004-1)^2
=4018019^2
所以2003*2004*2005*2006+1是4018019的平方
推荐
猜你喜欢
- 为什么稀有气体元素的原子半径不是同周期中最小的?
- 21,22,23,24,25,26,27,28,29用英语咋念
- is it on desk Wang Bing's 排序
- 小军和小明的邮票同样多,小军取出180张,小明取出350张,这时小军剩下的刚好是小明1.5倍,两人原有多少张
- "she does not sometimes go to the movies" 该句式是不是对的?
- 真光合 与 净光合 什么关系
- 氯酸钾和稀盐酸的反应方程式 KClO3+HCl====?
- 贾平凹的《月迹》中优美句子