已知双曲线C与双曲线y^2/2-x^2=1有相同的渐近线,且C的一个顶点为(1,0),C的焦点为F1,F2,在曲线C上有一点M满足MF1与MF2的数量积为0,求点M到x轴的距离.
人气:481 ℃ 时间:2019-08-20 00:33:29
解答
首先,可以求出双曲线的渐近线为y=±√2对于双曲线C:由它的一个顶点为(1,0)可得,a=1又b/a= √2,所以,b= √2双曲线C可以写成x^2-y^2/2=1所以,F1=(-√3,0)F2(√3,0)设|MF1|= x,|MF2 |=x-2因为向量MF1·向量...
推荐
- 已知双曲线C与双曲线y²/2-x²=1有相同的渐近线,且C的一个顶点为(1,0),C的焦点为F1,F2,在曲线C上有一点M满足MF1·MF2=0,求点M到x轴的距离,
- 已知F1、F2分别是双曲线C:x2a2-y2b2=1的左、右焦点,若F2关于渐近线的对称点恰落在以F1为圆心,|OF1|为半径的圆上,则双曲线C的离心率为( ) A.3 B.3 C.2 D.2
- 已知F1、F2分别是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左、右焦点,过F2与双曲线的一条渐近线平行的直线交另一条渐近线于点M,若∠F1MF2为锐角,则双曲线离心率的取值范围?求详解.
- 已知双曲线2分之x方-b方分之y方=1(b>0)的左右焦点分别是F1,F2,其中一条渐近线方程为y=x,
- 已知F1、F2分别是双曲线C:x^2/a^2-y^2/b^2=1的左右焦点,若F2关于渐近线的对称点恰落在以F1为圆心,丨OF1丨为半径的圆上,则双曲线C的离心率为
- In the end ,I found the answer _ the difficult question.A.to B.of C.about
- 求part of your world的歌词加翻译
- 一本书,已经看了总页数的60%,没有看的与全书的比是( ) A.2:3 B.3:5 C.2:5 D.1:3
猜你喜欢