在△ABC中,a、b、c分别是三个内角A、B、C的对边,若a=2,c=π/4,cos(B/2)=2√5/5,求△ABC的面积S
不要说是兀/5,边c怎么求啊
人气:361 ℃ 时间:2020-07-01 23:36:32
解答
因为cos(B/2)=2√5/5,所以cosB=cos(B/2)的平方减去sin(B/2)的平方=3/5,推出sinB=4/5,所以sinA=sin(B+C)=sinBcosC+cosBsinC=7√2/10,又因为a/sinA=c/sinC推出c=10/7所以S=a*c*sinB/2=(2*10/7*4/5)/2=8/7
方法2可以由顶角A 做垂直于BC边上交于D点,算出了tanB=4/3,因为角C等于45°,设高AD等于DC等于X,则BD等于2-X,则tanB=AD/BD=4/3,推出X等于8/7,所以S=AD*BC/2=8/7
推荐
- 在三角形中,内角A,B,C,的对边分别为a,b,c,设S为三角形ABC的面积,满足S=根号3/4(a^2+b^2-c^2)
- 已知a、b、c分别是△ABC的三个内角A、B、C的对边. (1)若△ABC面积S△ABC=32,c=2,A=60°,求a、b的值; (2)若a=ccosB,且b=csinA,试判断△ABC的形状.
- 已知a、b、c分别为△ABC的三个内角A、B、C的对边,且△ABC的面积S,(1)当2cosA/2+cos(B+C)取得最大值时,求A
- 在△ABC中,a,b,c分别是三个内角A.B.C的对边,若a=2c=π/4cos(B/2)=(2根号5)/5 求△ABC面积.?
- 在△ABC中,a、b、c分别是三个内角A、B、C的对边,若a=2,c=π/4,cos(B/2)=2√5/5,求△ABC的面积S
- 找课文,A man who never gave up .需要全文.
- obama received the Nobel Peace Prize ,how to criticize this thing
- 表示腿的动作的词(30个)
猜你喜欢