已知2^n(n属于N+)能整除2007^2048 -1,求n的最大值
人气:321 ℃ 时间:2019-11-01 18:17:50
解答
2007^2048 -1=[2007^(2^10)+1][2007^(2^9)+1]...[2007^2+1][2007+1][2007-1]2007-1=2006=2*1003,2007+1=2008=2^3*251,2007^2+1=2006^2+2*2006+2,2006^2+2*2006是4的倍数,所以2007^2+1只含2的1次幂.2007^4+1,...,2007...
推荐
- 2的n次方能整除2007的2048次方-1,n的最大值为?
- 已知三个连续的自然数(n,n+1,n+2),它们都小于2006,其中n能被11整除,n+1能被13整除
- 已知:n是整数,(2n+1)2-1能被8整除吗?试证明你的结论.
- 已知3n+m能被13整除,求证:3n+3+m也能被13整除.
- 已知3的n次方+m能被13整除,求证3的3n+3次方+也能被13整除
- 知丑的不知足,
- 在△ABC中,猜想T=sinA+sinB+sinC的最大值,并证明.
- 用NA表示阿伏加德罗常数,下列叙述正确的是
猜你喜欢