已知函数f(x)=ln(x+1)+ax 1.当x=0 函数有最大值求a 2.求函数单调区间
人气:353 ℃ 时间:2019-08-18 10:36:43
解答
函数f(x)=ln(x+1)+ax,定义域为(-1,+∞).
导函数f′(x)=1/(x+1)+a=(ax+a+1)/(x+1).
(1)由题意,x=0是函数的最大值点,
∵0∈(-1,+∞),
∴函数f(x)在(-1,0)上为增函数,在(0,+∞)上为减函数,
∴x=0必为函数的极大值点,
因此,f′(0)=0,得a= -1;
(2)由(1)知a= -1,f(x)=ln(x+1),定义域为(-1,+∞).
导函数f′(x)=1/(x+1)-1= -x/(x+1),(x>-1).
令f′(x)>0,得-1
推荐
- 设函数f(x)=lnx+ln(2-x)+ax(a>0).(1)当a=1时,求f(x)单调区间;(2)若f(x)在(0,1]上的最大值为1/2,求a
- 设函数f(x)=lnx+ln(2-x)-ax(a大于0).(1)当a=1,求f(x)单调区间;(2)若f(x)在(0,1]上的最大值为1/2,求a值
- 设函数f(x)=lnx+ln(x+2)+ax(a>0),一a=1时求f(x)的单调区间.二若f(x)在(0,1]上的最大值为1...
- 设函数f(x)=lnx+ln(2-x)+ax(a大于0) (1)当a=1时,求f(x)单调区间;(2)若f(x)在(0,1]上的最大值为1/2,求a
- 设函数f(x)=lnx+ln(2-x)-ax(a大于0).(1)当a=1,求f(x)单调区间;(2)若f(x)在(0,1]上的最大值为1/2,求a
- 让我帮你带上这条项链吧 英文翻译
- 在m克水中加入n克质量分数为20%的某盐溶液,则所得溶液中的质量分数为:A:(n/m*n)*100%
- 电器经营业主计划购进同一批同种型号的挂式空调和电风扇.若购进18台空调和20台电风扇.需要资金17400元.若
猜你喜欢