AE为三角形ABC中线,DE平分∠BDA交AB于E,DF平分∠ADC交AC于F,求证:BE+CF>EF
人气:155 ℃ 时间:2019-08-21 05:45:34
解答
题目:AD(此处为D)为三角形ABC中线,DE平分∠BDA交AB于E,DF平分∠ADC交AC于F,求证:BE+CF>EF
证明:过C作CM‖AB,交ED延长线于M点,连FM
所以∠B=∠DCM,∠BED=∠CMD,
又AE为三角形ABC中线,
所以BD=CD,
所以△BDE≌△CDM
所以BE=CM,ED=MD
因为DE平分∠BDA交AB于E,
所以∠ADE=∠ADB/2,
因为DF平分∠ADC交AC于F,
所以∠ADF=∠ADC/2,
所以∠ADE+∠ADF=∠ADB/2+∠ADC/2=(∠ADB+∠ADC)/2,
因为∠ADB+∠ADC=180,
所以∠ADE+∠ADF=90°,
所以FD垂直平分EM,
所以EF=FM,
在三角形CFM中,CM+FC>FM,
即BE+CF>EF
推荐
- AE师三角形ABC中线,CD=AB,角BDA=角BAD,求证AC=2AE
- 如图,AB平分CD,∠ABC=∠ADC,AE=CF,BE=DF,求证:EF与AC互相平分
- D是三角形ABC边BC的中点 DE ,DF分别是∠BDA ,∠ADC 的角平分线 分别交AB,AC于点E,F求证:EF<BE+CF
- 三角形ABC中,AD是三角形ABC的中线,AE为三角形ABD的中线,AB=DC,∠BAD=∠BDA,求证:AC=2AE
- 如图,D是△ABC的BC边上一点且CD=AB,∠BDA=∠BAD,AE是△ABD的中线. 求证:∠C=∠BAE.
- 什么是良导体
- 咏雪一词多义
- 敦煌莫高窟的是太美了(把句子写具体)
猜你喜欢