已知abc都是实数 求证 a^2+b^2+c^2》1/3(a+b+c)》ab+bc+ca
人气:429 ℃ 时间:2019-08-20 04:01:56
解答
其实这是三个均值不等式之间的传递
很简单的 可以查看这个帖子 baike.baidu.com/view/441784.htm#1
baike.baidu.com/view/726439.htm
平方平均>=算术平均>=几何平均>=调和平均
举个三个数的例子,即:
[√(a^2+b^2+c^2)]/3 >= (a+b+c)/3 >= 三次根号下(abc) >=3/[(1/a)+(1/b)+(1/c)]
√[(a^2+ b^2)/2] ≥(a+b)/2 ≥√ab ≥2/(1/a+1/b)
(二次幂平均≥算术平均≥几何平均≥调和平均)这个我知道。。。我想知道证明过程3(a^2+b^2+c^2)-(a+b+c)^2=(2a^2+2b^2+2c^2-2ab-2bc-2ac)=[(a-b)^2+(b-c)^2+(c-a)^2]≥03(a^2+b^2+c^2)≥(a+b+c)^2(a^2+b^2+c^2)≥1/3*(a+b+c)^2(a+b+c)的平方-3(ab+bc+ca)=(a^2+b^2+c^2-ab-bc-ca)=[(a-b)^2+(b-c)^2+(c-a)^2]/2≥0(a+b+c)的平方≥3(ab+bc+ca)1/3*(a+b+c)的平方≥(ab+bc+ca)所以,a的平方+b的平方+c的平方大于等于1/3(a+b+c)的平方大于等于ab+bc+ca
推荐
- 已知a,b,c为实数,且ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5.求abc/ab+bc+ca的值
- 已知abc都是正实数,求证:bc/a+ca/b+ab/c=>a+b+c
- 已知a、b、c为实数,且ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5.求abc/ab+bc+ca的值
- 已知abc都是实数 求证 a^2+b^2+c^2》1/3(a+b+c)》ab+bc+ca
- 已知a、b、c为实数,且ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5.求abc/ab+bc+ca的值
- 甲,乙两人相距200米,如果相向而行经过20秒后相遇;如果同向而行经过200秒甲追上乙.
- 2.如图所示,滑动变阻器上标有“20Ω 2A”字样,当滑片P在中点时,电流表读数为0.24安,电压表读数为7.2
- 正数的对数都是负数
猜你喜欢
- There is [ ] 'm' in the word 'map' A.the B.a C.an D this 说清楚理由
- 太阳光线照到地球后到哪里去了,又反射回太空吗?
- Her aunt bought her a colorful scarf.
- 8,8,8,6加减成除,一个数字只能用一次,怎么等于24?
- AO⊥BC,垂足为点O,且∠COD-∠DOA=34°28′,则∠BOD=?
- 做房子的桁条的杉木长度需3.8米,直径需要达到14厘米以上.有一根杉木长8米,在距根部3.8米处量得周长45
- 若一个数的两个平方根分别为a—5和2a+1则这个数为多少?
- 牛奶如何保鲜,牛奶保鲜方法