已知abc都是正实数,求证:bc/a+ca/b+ab/c=>a+b+c
RT
人气:431 ℃ 时间:2019-08-20 04:41:03
解答
根据均值不等式,BC/A+CA/B>=2C
同理
AC/B+AB/C>=2A
BC/A+BA/C>=2B
所以2(bc/a+ca/b+ab/c)>=2(a+b+c)
得证
推荐
- 已知a,b,c为实数、a+b+c>0,ab+bc+ca>0,abc>0,求证a>0,b>0,c>0
- 已知a,b,c为实数,且ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5.求abc/ab+bc+ca的值
- 已知abc都是实数 求证 a^2+b^2+c^2》1/3(a+b+c)》ab+bc+ca
- 已知a、b、c为实数,且ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5.求abc/ab+bc+ca的值
- 已知a、b、c均为实数,且abc=1,则1a+ab+1+1b+bc+1+1c+ca+1的值为( ) A.12 B.13 C.1 D.3
- 生长在亚马逊会流血的树是什么树?
- better man
- x+3y=2 3y+z=4 z+3x=3 这个三元一次方程的解
猜你喜欢