设A为n阶矩阵,若存在正数k,是线性方程组A^kX=0有解向量α,且A^k-1α≠0.证明:向量组α,Aα,…,A^k-1α线性相关”
人气:179 ℃ 时间:2020-06-26 04:43:58
解答
设有常数m1,m2..mk 使得m1a+m2Aa+,mkA^(k-1)a=0
上式乘以A^(k-1) 有m1A^(k-1)a=0 (A^ka=0 则对任意l>=k,A^(l)a=0)
A^k-1α≠0所以m1=0
再乘以A^(k-2)可以推出m2=0
依次下去得出m1=m2=...mn=0
所以线性无关
推荐
- 设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0是解,则|A|=?
- 设A是n阶矩阵,若存在正整数k,使线性方程组A^kX=0有解向量a,且A^k-1a≠0.证明:a,Aa,…,A^K-1a线性无关
- 设A是n阶实矩阵,b是任意的n维列向量,证明线性方程组A^TAx=A^Tb有解
- 设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=?求教~
- 设A为m*n矩阵,B为n*s矩阵,证明:AB=0的充要条件是B的每个列向量均为齐次线性方程组AX=0的解.
- 两根钢管的长度相等,都不满一米,第一根用去三分之一,第二根用去三分之一米,哪一根剩下的长
- -___is her daughter?-The girl on the right wearing blue jeans.
- 在火星上,某物体做自由落体运动,2s内的位移为16m;则火星上的重力加速度是多大.在开始自由下落第2s内...
猜你喜欢