a |
a-1 |
∴
a |
a-1 |
②-①得
1 |
a-1 |
a |
a-1 |
即an+1+1=a(an+1),{an+1}是以a为公比的等比数列.∴an+1=(a1+1)an-1
又由
a |
a-1 |
(2)a=
8 |
9 |
8 |
9 |
8 |
9 |
8-n |
9 |
8 |
9 |
8 |
9 |
当n<8时,bn+1-bn<0即bn+1<bn,∴b1>b2>>b8
当n=8时,bn+1-bn=0即bn+1=b&n,b8=b9
当n>8时,bn+1-bn>0即bn+1>bn∴b9<b10<
存在最小项且第8项和第9项最小
(3)由bn+1>bn得bn+1-bn=(n+1)an+1lga-nanlga=an[(n+1)a-n]lga>0
当a>1时,得(n+1)a-n>0,即a>
n |
n+1 |
当0<a<1时,lga<0,∴(n+1)a-n<0即a<
n |
n+1 |
1 |
2 |
1 |
2 |
综上,a的取值范围为(0,
1 |
2 |