=Sn+1-Sn
=
1 |
8 |
1 |
8 |
∴8an+1=(an+1+2)2-(an+2)2,
∴(an+1-2)2-(an+2)2=0,(an+1+an)(an+1-an-4)=0.
∵an∈N*,∴an+1+an≠0,
∴an+1-an-4=0.
即an+1-an=4,∴数列{an}是等差数列.
(2)由(1)知a1=S1=
1 |
8 |
bn=
1 |
2 |
法一:
由bn=2n-31可得:首项b1=-29,公差d=2
∴数列{bn}的前n项和sn=n2-30n=(n-15)2-225
∴当n=15时,sn=225为最小;
法二:
由
|
29 |
2 |
31 |
2 |
∴{an}前15项为负值,以后各项均为正值.
∴S15最小.又b1=-29,
∴S15=
15(−29+2×15−31) |
2 |