已知f(x)=log2(1+x^4)-(1+mx)\(1+x^2)(x属于R)是偶函数 (1)求m的数值,给出函数的单调区间
(2)解不等式f(x+k)>f(|3x+1|)
人气:384 ℃ 时间:2020-04-20 20:29:51
解答
f(x)是偶函数 则f(x)=f(-x)
log2(1+x^4)-(1+mx)\(1+x^2)=log2[1+(-x)^4]-(1-mx)\[1+(-x)^2]
即1+mx=1-mx在X是任意实数时成立即可,则m=0
原函数为f(x)=log2(1+x^4)-1\(1+x^2)
推荐
- 已知f(x)=log2(1+x^4)-(1+mx)\(1+x^2)(x属于R)是偶函数 解不等式f(|x+k|)>f(|3x+1|)
- 已知f(x)=log2(1+x^4)-(1+mx)\(1+x^2)(x属于R)是偶函数
- 已知函数f(x)=log2(4^x+1)+kx,(k∈R)是偶函数 求K的值
- 已知函数f(x)=log2(1+xx) 求证:(1)函数f(x)是偶函数;(2)函数f(x)在区间(0,正无穷大)上是增函数
- 已知函数f(x)=log2(1+x^2) (1)证明函数f(x)是偶函数 (2)证明函数f(x)在区间(0,+∞)上是增函数
- V.Complete the dialogue.补全对话.(10分)答案写在后面横线上.
- 一个没有盖的圆柱形铁皮水桶,高是12米,底面直径是高的四分之三.做这个水桶大约用铁皮多少平方分米?(用进一法取近似数值,得数保留整十数平方分米.)
- 1.已知三角形ABC中,AB,BC,CA,边上的中点分别为F(3,-2),D(5,4),E(-1,-8),求BC边上中线AD的长.
猜你喜欢
- 某人站在高楼的平台边缘,
- 7.已知整型变量a=3,b=4,c=5,写出逻辑表达式a
- 若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有( ) A.7个 B.8个 C.9个 D.10个
- 把一根长1米的长方体材料平均截成4段后,表面积增加了36平方厘米,原来这根木料的体积是多少?
- 虎,牛,完,元.多一笔或少一笔是什么字?
- 为什么摇晃瓶子后,里面的液体会产生气泡?
- 天上的街市属于联想的句子有?