联立2方程,可得交点为C(3,-2)
在L1上取点A(2,0),设其关于L3的对称点为A'(a,b)
3x+4y-1=0,y = 1/4 -3x/4,斜率为-3/4
AA'与L3垂直,AA'的斜率为k = (b+2)/(a -3) = 4/3 (1)
AA'的中点为B((2+a)/2,b/2),而且B在L3上:3(2+a)/2 + 2b -1 = 0 (2)
联立(1)(2)方程:a = 4/5,b = -8/5
A'(4/5,-8/5)
L1关于直线L3对称的方程为:(y+2)/(x-3) = (-8/5 +2)/(4/5 - 3)
2x + 11y +16 = 0