> 数学 >
已知数列
1
1×3
1
3×5
1
5×7
,…
1
(2n−1)(2n+1)
,设其前n项和为Sn
(1)求出S1,S2,S3,S4
(2)猜想前n项和Sn并证明.
人气:470 ℃ 时间:2020-05-03 03:40:02
解答
(1)S1
1
3
S2
1
3
+
1
3×5
=
2
5
,S3=
2
5
+
1
5×7
=
3
7
S4
3
7
+
1
7×9
=
4
9

(2)由(1)猜想Sn
n
2n+1

证明:∵
1
(2n−1)(2n+1)
1
2
(
1
2n−1
1
2n+1
)

∴Sn=
1
2
[(1−
1
3
)+(
1
3
1
5
)+…+(
1
2n−1
1
2n+1
)]
=
1
2
(1−
1
2n+1
)
=
n
2n+1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版