从原点出发的某质点M,按照向量a=(0,1)移动的概率为2/3,按照向量b=(0,2)移动的概率为1/3,设M可到达点(0,n)的概率为Pn
1:求P1 P2 这个我会
2:求证P(n+2) - P(n+1)= -1/3(P(n+1)-Pn)
3:求Pn的表达式
人气:491 ℃ 时间:2020-06-21 06:24:33
解答
首先我们可以大致构建这样一个思想:当N趋近于无限时,P(N)趋近于1.
2)P(n+2)=1/3P(n)+2/3P(n+1)
推出P(n+2)-P(n+1)=1/3P(n)+2/3P(n+1)-P(n+1)
得证P(n+2) - P(n+1)= -1/3(P(n+1)-Pn)
3)由2)得到
P(n+2)-P(n+1)/(P(n+1)-P(n))=-1/3
显然等比数列
P(n+1)-P(n)=(-1/3)^(n-1)*(P(2)-P(1))=(-1/3)^(n+1)(^这个符号是编程里的乘方).
P(n)=(-1/3)^(n)+(-1/3)^(n-1)+……+(-1/3)^(2)+P(1)(n>=2)
推荐
- 向量及概率问题
- 已知非零向量OA\OB 与向量OC共面,且夹角分别为30度和120度,设OC=OA-OB,则向量OC与OP的夹角的取值范围是
- 已知向量a,b,c满足|a|=1,|a-b|=|b|,(a-c)(b-c)=0.若对每一确定的b,|c|的最大值和最小值分别为m,n,则对任意b,m-n的最小值是
- 在三角形ABC中,(向量AC*向量AB)/向量AB的模=1,(向量BC*向量BA)/向量BA的模=2,则AB边的长度为?
- OABCD是以平面内4点,向量OA=aOB+bOC+cOD a+b+c=1能否说明ABCD共线?为什么?
- 先化简,再求值:(5x-2)(x-3)-2(x+6)(x-5)-3(x²-6x-1),其中x=2009.
- 找规律 填数字
- 2367890精确 十万
猜你喜欢