已知F1,F2是椭圆的焦点,P为椭圆上一点,∠F1PF2=60°.
(1)求椭圆离心率的取值范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关.
人气:215 ℃ 时间:2019-08-19 12:13:01
解答
设椭圆方程为 x2a2+y2b2=1(a>b>0),|PF1|=m,|PF2|=n. 在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mncos60°.∵m+n=2a,∴m2+n2=(m+n)2-2mn=4a2-2mn,∴4c2=4a2-3mn.即3mn=4a2-4c2. 又mn≤( m+n2)2=...
推荐
- F1,F2是椭圆x2a2+y2b2=1的两个焦点,点P是椭圆上任意一点,从F1引∠F1PF2的外角平分线的垂线,交F2P的延长线于M,则点M的轨迹是_.
- 已知椭圆x2/a2+y2/b2=1上一点P,F1,F2是椭圆的焦点若∠F1PF2=θ,求F1PF2面积
- F1,F2是椭圆x2/a2+y2/b2=1(a>b>0)的两焦点,p是椭圆上任意一点,∠F1PF2=90°,求离心率的取值范围?
- p是椭圆X2/a2+Y2/b2=1上一点,F1,F2为两焦点,角F1PF2等于A,证明:三角形面积等于b2tanA/2
- 已知椭圆方程x2/a2+y2/b2=1的左右焦点F1、F2,点P(a,b)为动点,三角形F1PF2为等腰三角形,求椭圆的离心率
- 人本主义观点是什么?具体解释一下
- 英语翻译
- 方程x平方-2x+m=0的一个根为-3则另一个根为()m的值为什么
猜你喜欢