线性代数中,设方阵A满足A^2-2A+3E=0,如何证明 A-3E可逆.
人气:472 ℃ 时间:2020-01-27 14:44:06
解答
证明:
∵A^2-2A+3E=0
∴A^2-3A+A-3E+6E=0
A(A-3E)+(A-3E)=-6E
(A-3E)(A+E)=-6E
∴|(A-3E)(A+E)|=|A-3E||A+E|=|-6E|≠0
∴|A-3E|、|A+E|都不为零,即可逆
证毕
推荐
- 设n阶方阵A满足A^2-3A+3E=0证明A-2E可逆,并求其逆矩阵?
- 已知方阵满足A^2-2A+2E=0,证明A及A-3E都可逆,并求A和A-3E的逆矩阵
- 关于线性代数:设n阶方阵 ,且满足 ,证明3E-A不可逆
- 设方阵A满足A^2-2A+4E=O,证明A+E和A-3E都可逆,并求他们的逆矩阵
- 已知n阶方阵A满足A^2-2A-3E=0 证明A可逆 并求A^-1
- 用函数观点看一元二次方程 1、 二次函数y= -x2+4x的值为2,求自变量x的值, 可以看作是解一元二次方程____
- 一个长方形,宽是6厘米,如果宽增加4厘米,面积就增加56厘米2,原来长方形的面积是多少?
- 英美法资产阶级革命的成果,并逐一说明其作用
猜你喜欢