>
数学
>
已知方阵满足A^2-2A+2E=0,证明A及A-3E都可逆,并求A和A-3E的逆矩阵
人气:384 ℃ 时间:2019-11-02 06:10:44
解答
因为 A^2-2A+2E=0,
所以 A(A-2E) = -2E
所以 A 可逆,且 A^-1 = -1/2 (A-2E).
再由 A^2-2A+2E=0
A(A-3E) + (A-3E) +5E = 0
所以 (A+E)(A-3E) = -5E
所以 A-3E 可逆,且 (A-3E)^-1 = -1/5 (A+E).
推荐
已知方阵满足A^2-2A+2E=0,证明A及A-3E都可逆,并求A和A-3E的逆矩阵
设n阶方阵A满足A^2-3A+3E=0证明A-2E可逆,并求其逆矩阵?
设方阵A满足A²+3A-2E=0,证明方阵A+3E可逆,并求A+3E的逆矩阵.
设方阵A满足A^2-2A+4E=O,证明A+E和A-3E都可逆,并求他们的逆矩阵
设方阵A满足A*A=A 证明A+3E可逆,并求(A+3E)逆矩阵
求一篇80次左右的英语文章 描写一位较为熟知的伟人
how much is the coat?___ ___ ___ ____ of the coat?
一个多项式A加上3x2-5x+2得到2x2-4x+3,求这个多项式A.
猜你喜欢
中国近代史上的人物传记
函数f(x)=sinx+cosx在x∈【-π/2,π/2】时,函数的最大、最小值分别为
10克除0.6等于?
在发展农业过程中,印度重视水利工程建设与印度自然环境有什么关系
The movie is very interesting ____ most people.A.for.B.on.C.at.D.in 说理由,
48除以一个数,商是6余1,这个数是多少?
?Because I have no classes .怎样写?急!
That is an eraser.变否定句、 一般疑问句
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版