已知f(x)=ax^3+bx^2+cx+d为奇函数,且在点(2 f(2) )处得切线方程为9x-y-16=o,则 f(x)的解析式?
写清解答过程
人气:269 ℃ 时间:2019-09-02 09:24:59
解答
解因为f(x)=ax^3+bx^2+cx+d为奇函数所以f(-x)=a(-x)^3+b(-x)^2+c(-x)+d=-f(x)=-(ax^3+bx^2+cx+d),当对任何x都成立时,得到b=0,d=0,所以方程f(x)=ax^3+cx,所以f‘(x)=3ax^2+c所以在x=2时的切线的斜率=12a+c=9,在点...
推荐
- 奇函数f(x)=ax^4+bx^3+cx^2+dx+e的图像在x=1处的切线方程为y=x-2.
- 已知f(x)=ax3+bx2+cx+d为奇函数,且在点(2,f(2))处的切线方程为9x-y-16=0.
- 偶函数f(x)=ax^4+bx^3+cx^2+dx+e的图像过点P(0,1),在x=1处的切线方程y=x-2,求y=f(x)的解析式
- 偶函数f(x)=ax^4+bx^3+cx^2+dx+1在x=1处的切线方程为y=x-2,求函数y=f(x)的解析式
- 已知函数f(x)=ax^3+bx^2+cx+d f(x)在x=1处的切线方程为y=2x-2
- 已知向量a,b满足向量a的模=1,向量a*(向量a-向量b)=0,则向量b的模的取值范围是?
- 解释下面加点词的意思
- gee,do i know u,that such emotional young man
猜你喜欢