已知x>2y,xy=1,求(x²+4y²)/(x-2y)的最小值和此时x、y的值
人气:305 ℃ 时间:2019-12-13 15:31:51
解答
已知x>2y,xy=1,
故设x-2y=t>0,
则(x-2y)²=t²
→x²+4y²=t²+4xy=t²+4.
∴依基本不等式得
(x²+4y²)/(x-2y)
=(t²+4)/t
=t+(4/t)
≥2√(t·4/t)
=4.
故所求最小值为:4.
此时,x-2y=4/(x-2y)且xy=1.
解得,x=1+√3,y=(-1+√3)/2:
或x=1-√3,y=-(1+√3)/2.
推荐
- 已知,x-2y=7,xy=-5,则x²+4y²-4=?
- 已知,x-2y=5,xy=25,求x²+4y²-1的值
- 只求第三问
- 计算:已知x-2y=12,xy=2,求x²+4y²
- 已知x-2y=12,xy=2,求x²+4y²的值
- 若已知x+(1/x)=5,则x的平方/x的四次方+x的平方+1等于多少?
- 一元一次方程当一边是什么,而另一边是什么时,方程就可以用因式分解法来解
- 甲、乙两车分别从A、B两地同时相对开出,相遇后又经过5小时,乙车到达A地,而甲车超过B地90千米,超出全程的25%,甲车每小时行多少千米?
猜你喜欢