已知x>2y,xy=1,求(x²+4y²)/(x-2y)的最小值和此时x、y的值
人气:116 ℃ 时间:2019-12-13 15:31:51
解答
已知x>2y,xy=1,
故设x-2y=t>0,
则(x-2y)²=t²
→x²+4y²=t²+4xy=t²+4.
∴依基本不等式得
(x²+4y²)/(x-2y)
=(t²+4)/t
=t+(4/t)
≥2√(t·4/t)
=4.
故所求最小值为:4.
此时,x-2y=4/(x-2y)且xy=1.
解得,x=1+√3,y=(-1+√3)/2:
或x=1-√3,y=-(1+√3)/2.
推荐
- 已知,x-2y=7,xy=-5,则x²+4y²-4=?
- 已知,x-2y=5,xy=25,求x²+4y²-1的值
- 只求第三问
- 计算:已知x-2y=12,xy=2,求x²+4y²
- 已知x-2y=12,xy=2,求x²+4y²的值
- 乱花渐欲迷人眼,浅草才能没马蹄中渐和才有怎样的表达效果
- 在一个长10厘米、宽5厘米的长方形中画一个最大的圆,它的半径是( ) A.10厘米 B.5厘米 C.2.5厘米 D.1.5厘米
- 英语:1、这家商店有各种冷饮.(翻译)
猜你喜欢