已知a、b、c均为正整数,且满足a2+b2=c2,又a为质数.
证明:(1)b与c两数必为一奇一偶;(2)2(a+b+1)是完全平方数.
人气:211 ℃ 时间:2020-03-23 18:25:24
解答
证明:(1)∵a2+b2=c2,∴a2=c2-b2=(c+b)(c-b),因为a是质数,而(c+b)和(c-b)不可能都等于a,所以c-b=1,c+b=a2,得到c=b+1,则b,c是两个连续的正整数,∴b与c两数必为一奇一偶;(2)将c=b+1代入原式得:...
推荐
- 已知abc为正整数,且a^2+b^2=c^2,又a为质数,说明下列结论成立的理由:①b、c两数必须一奇一偶.②2(a+2b-c+2)是完全平方数(即一个数的平方).
- 已知a、b、c均为正整数,且满足a^2+b^2=c^2,又a为质数.证明:(1).b与c两数必为一奇一偶 (接下)
- 已知a,b,c均为正整数,且满足a的平方加上b的平方等于c的平方,又因为a为质数,求证2(a+b+c)是完全平方
- 已知a、b、c均为正整数,且满足a2+b2=c2,又a为质数. 证明:(1)b与c两数必为一奇一偶;(2)2(a+b+1)是完全平方数.
- 设a为质数,b和c为正整数,且满足
- 淮河水主要是注入长江还是黄海?如果是主要注入长江,淮河为什么不算是长江的一大支流呢?
- 中文地址改英文,
- I ___ (learn)more than 5000 words so far.
猜你喜欢