在△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF平行BC,交AD于点F.求证:四边形CDEF为菱形
人气:492 ℃ 时间:2020-03-30 08:17:29
解答
连接CE交AD于G,因为AE=AC,而且AD平分∠BAC所以AD垂直CE,通过边角边的推论可得EF=CF,又因为EF平行BC,所以四边形CDEF是一个对角线互相垂直的平行四边形,即为菱形 楼下的证明EF=CF很简单 因为AD平分∠BAC所以∠BAD=∠DAC,AE=AC,AF=AF,两个三角形全等了就证明了EF=CF
推荐
- 如图,△ABC中,∠BAC的平分线交BC于D,E是AB上一点,且AE=AC,EF∥BC交AD于F,求证:四边形CDEF是菱形.
- 在Rt 三角形ABC中,角ACB等于90度,AE平分角BAC交BC于E,EF垂直于AB于F,高CD交AE于H,求证四边形CEFH为菱形
- 已知:如图,△ABC中,AD是角平分线,E是AB上一点,且AE=AC,EG∥BC,EG交AD于点G.求证:四边形EDCG是菱形.
- 已知:如图,△ABC中,AD是角平分线,E是AB上一点,且AE=AC,EG∥BC,EG交AD于点G.求证:四边形EDCG是菱形.
- 若△abc中ae平分∠bac,ed平行ac,ef平行ab求证:四边形adef为菱形
- 已知x>0,y>0,4x^2+y^2+xy=1求2x+y最大值
- dragon boat festival mid-autumn day lantern's day easter day 分别是什么节日?
- NH3形成的晶体是分子晶体吗?那C4H10呢?
猜你喜欢