∴梯形ABCD为等腰梯形.
∵∠C=60°,
∴∠BAD=∠ADC=120°.
又∵AB=AD,
∴∠ABD=∠ADB=30°.
∴∠DBC=∠ADB=30°.
∴∠BDC=90°.
由AE⊥BD,
∴AE∥DC.
又∵AE为等腰△ABD的高,
∴E是BD的中点(等腰三角形三线合一).
∵F是DC的中点,
∴EF∥BC.
∴EF∥AD.
∴四边形AEFD是平行四边形.
(2)在Rt△AED中,∠ADB=30°,
∵AE=x,
∴AD=2x.
在Rt△DGC中∠C=60°,且DC=AD=2x,
∴DG=
3 |
由(1)知:在平行四边形AEFD中:EF=AD=2x,
又∵DG⊥BC,
∴DG⊥EF.
∴四边形DEGF的面积=
1 |
2 |
∴y=
1 |
2 |
3 |
3 |